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Abstract From time to time it is thoughtful and productive to
review a medical field and reflect upon what are the major
issues that need to be addressed and what is being done to
do so. This review article is not meant to be all-inclusive but
rather focuses on four evolving areas in the field of peripheral
nerve disorders and treatments: (1) nerve surgery under ultra-
sound guidance using a new ultra-minimally invasive thread
technique; (2) evolving magnetic resonance imaging (MRI)
and ultrasound imaging techniques that are helping to both
diagnose and treat a variety of peripheral nerve problems in-
cluding entrapment neuropathies, traumatic nerve injuries,
and masses arising from nerves; (3) promoting recovery after
nerve injury using electrical stimulation; and (4) developing
animal models to reproduce a severe nerve injury (neurotmetic
grade in continuity) that requires a surgical intervention and
repair. In each area we first describe the current challenges and
then discuss new and emerging techniques and approaches. It
is our hope that this article will bring added attention and
resources to help better address peripheral nerve problems that
remain a challenge for both patients and physicians.
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New surgical procedure: thread transecting
technique

The thread transecting technique is an ultra-minimally inva-
sive surgical technique for dissecting a tissue in a body, in
which a piece of flexible and smooth thread is utilized as a
means to divide the target [1]. This technique involves several
steps: (1) encircling the structure with a smooth small diame-
ter cutting thread through two small skin puncture sites under
image guidance; (2) checking that only the structure(s) desired
to be cut are encircled by the cutting thread; and (3) actually
cutting the desired structure(s). The thread carpal tunnel re-
lease (TCTR) is the first clinical application of this new
technique.

Procedure

The transverse carpal ligament (TCL) is looped with the di-
viding thread through a spinal needle under real-time ultra-
sound guidance. After checking the loop position, the TCL is
divided by sawing the thread, leaving only two needle punc-
tures as entry and exit points (Fig. 1). During the TCTR pro-
cedure, ultrasound provides real-time three-dimensional high-
quality images (Fig. 2) which allows tracking of the course of
the third common digital nerve from the median nerve, the
ulnar nerve and its sensory branches to the ring finger and
little fingers, as well as the Berrettini branch if it exists. The
clear visualization of the needle and thread during the proce-
dure, and the ease of making necessary adjustments, allows
the risk of causing iatrogenic injuries to be minimized while
preserving the superficial palmar aponeurosis [2].

During the TCTR procedure, before the final transecting
step, the position of the loop of the dividing thread can be
verified relative to the TCL and other anatomical structures.
If an incorrect thread path is indicated, then the thread can be
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Fig. 1 Thread transecting
technique. a Looped thread
around transverse carpal
ligament. b -A smooth thread is
looped around the TCL, and the
two ends are moved back and
forth until the TCL has been cut

removed and immediately re-routed using the same proce-
dure. If the surgeon encounters difficulties that require early
termination of the procedure, it can be safely stopped at any
step prior to the dividing of the TCL [1]. The technique en-
sures that the division happens only inside the loop of thread
around the target without injuring adjacent tissues.

Clinical outcomes

TCTR results in improved clinical outcomes as compared to
open and endoscopic approaches. To date, there have been no

Fig. 2 Ultrasonographic Proximal
panoramic view of the carpal
tunnel in the long axis. Yellow
dotted line indicates thread path.
TCL Transcarpal ligament, SPA
Superficial palmar artery, SO
tissue Subcutaneous tissue
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significant neurovascular complications in the 310 hands we
have operated on. Significant relief of symptoms is observed 3
to 5 h after the procedure. Most patients use their hands the
day of the procedure for simple daily activities. Patients report
their sleep quality is improved on the day of surgery. Most
patients with office jobs are able to return to work on postop-
erative day 1, and those with jobs involving more vigorous
manual activities return to work in about two weeks [3].
TCTR minimizes postoperative complications, such as pillar
pain, scar tenderness, and functional weakness, by avoiding
unnecessary injury to the structures surrounding the TCL.

——
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Further studies

TCTR is available for clinical practice. The thread trigger
finger release has been tested and verified in a cadaveric study,
and is under clinical investigation. Further studies are planned
to investigate the use of this technique for cubital tunnel re-
lease, tarsal tunnel release, plantar fascia release, release for
De Quervain’s tenosynovitis, common peroneal nerve release,
and fascial release for compartment syndrome and plantar
fasciitis.

Advanced nerve imaging techniques

Just as imaging has played a very important role in visualizing
and helping to diagnose pathology in the central nervous sys-
tem involving the brain and spinal cord, it is playing an in-
creasingly important role in localizing and identifying both
pathology and recovery of nerves of the peripheral nervous
system throughout the body. For example, both ultrasonogra-
phy and MRI have proven useful in diagnosing entrapment
neuropathies ranging from common disorders, such as carpal
tunnel syndrome and ulnar nerve entrapment across the elbow,
to less common entrapment syndromes. Ultrasonography is
proving to be particularly useful in helping surgeons localize
pathological lesions, such as tumors and sites of nerve entrap-
ment, in the operating room making it possible to perform
surgery through smaller incisions more efficiently.
Ultrasonography has also made it possible to develop new
ultra-minimally invasive nerve surgical procedures as de-
scribed in the section New surgical procedure. However, cer-
tain very important clinical problems and challenges remain,
such as distinguishing severe traumatic nerve injuries that can
recover on their own (e.g. an axonotmetic grade of nerve
injury where the axons have been damaged but the cellular
and molecular highways remain, allowing regeneration of
nerve fibers) from more severe injuries that require surgical
repair (e.g. a neurotmetic grade of injury in continuity where
blocking intraneural scar tissue must be resected and the two
ends of the nerve sutured together with or without interposi-
tion grafts). Other challenges include recognizing preopera-
tively the surgical resectability and grade of a peripheral nerve
tumor. Progress is being made to address these challenging
problems using both improving MRI and ultrasonography
technology as is described in greater detail below.

Grading of severe traumatic peripheral nerve injuries:
distinguishing axonotmetic from neurotmetic nerve
injuries

Initial efforts at using standard MRI pulse sequences with
some modifications in combination with high-resolution
phased array MR coils [4] led to improvements in the ability

to visualize both normal nerves and nerves with various types
of pathology. For example, T1 as well as T2 and STIR se-
quences are able to detect focal or segmental abnormalities in
nerve configuration and size as well as signal intensity in
patients with nerve entrapment syndromes such as carpal tun-
nel syndrome and ulnar nerve entrapment across the elbow. In
most cases of entrapment syndrome, the grade of nerve injury
is neuropraxic and involves only a segment of nerve usually
measuring no more than several centimeters. Several studies
have shown a good correlation between the actual length of
abnormal nerve signal and the amount of nerve conduction
slowing [5, 6]. However, efforts to use these MR imaging
parameters to visualize both nerve degeneration and regener-
ation in the setting of more severe grades of nerve injury have
produced ambiguous results [7, §].

MR diffusion tensor imaging (DTI) approaches, directed at
detecting and visualizing the presence or absence of axons by
virtue of their anisotropic properties, has met with some suc-
cess. For example, MR DTI has shown changes in a severely
damaged peroneal nerve that was surgically repaired with
sural nerve grafts that correlated with the initial injury and
subsequent successful regeneration of axons [9]. In addition,
ultrasonography (Fig. 3) has proven useful in demonstrating
whether nerves are in continuity or not, especially when clin-
ical and electrodiagnostic evidence and standard MR imaging
(Fig. 4) are equivocal. Ultrasonography combined with MR
DTI (Fig. 5) can be very accurate in localizing the site of
injury and disruption in axonal continuity that correlates well
with intraoperative findings (Fig. 6). We also have some pre-
liminary evidence that MR DTI may be helpful in visualizing
the extent of injury in the clinical setting of severe brachial
plexus injuries that involve avulsion of some of the spinal
nerve roots [10]. As we collect more and more MR DTI data
on intact and injured peripheral nerves, it is becoming increas-
ingly clear that collecting specific DTI values along the intact,
damaged, and recovering segments of nerve will play a critical
role in distinguishing nerve segments with and without axons.

Elbow Right Complete ne  rem som
Elbow Right Complete

Fig. 3 Longitudinal ultrasound image showing proximal (/eff) and distal
(right) stumps of a transected ulnar nerve with a small gap between
(arrow)
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Fig. 4 Standard axial T2 MR neurographic image showing a traumatic
neuroma at the site of nerve injury (arrow)

Determining the resectability of peripheral nerve tumors

It has been known for a while that many peripheral nerve
tumors, including both schwannomas and neurofibromas,
can be surgically resected with sparing of functioning nerve
fibers, so that patients suffer few if any deficits [11]. However,
some nerve tumors are more challenging, such as plexiform
neurofibromas, and their resection often produces significant
functional deficits. Standard MRI protocols have been useful
in helping the surgeon to appreciate the relationship of a nerve
mass to the surrounding nerve fascicles [12, 13]. More recent-
ly both MR DTI and ultrasonography have proven useful in
helping the surgeon determine the relationship of nerve fasci-
cles to the tumor proper [10].

Determining the grade of peripheral nerve tumors

Peripheral nerve tumors demonstrate a wide range of growth
behaviors which is reflected in their pathology that ranges
from benign to malignant. In fact, the majority of peripheral
nerve tumors actually stop growing for long periods of time
[14]. However, it can be challenging to distinguish malignant
from benign tumors on the basis of standard imaging charac-
teristics. Other imaging modalities, such as PET/CT which
measures the metabolic activity of tissue, can be helpful

Ulnar nerve

Neuroma
—"

Anterior Posterior

DISTAL

Fig. 5 Longitudinal MR neurographic DTI image showing ulnar nerve
axons (blue axons) stopping at the site of a traumatic neuroma
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especially in combination with clinical and MRI criteria
[15]. MR diffusion is also showing promise [16, 17].
Nonetheless, at present, a definitive diagnosis can only be
obtained from a biopsy obtained through either an open or a
percutaneous approach. High-resolution MR neurographic
techniques have increased diagnostic accuracy and success
by making it possible to detect and selectively target for biop-
sy, via an open surgical approach, abnormal appearing fasci-
cles within a peripheral nerve [18]. Novel approaches using a
nerve biopsy device with a nerve stimulator at the tip to avoid
damaging functioning nerve fibers are under development
(unpublished work by senior author).

Enhancing nerve regeneration: electrical stimulation

Mechanisms to further improve functional recovery remain at
the forefront of peripheral nerve research. While nerve trans-
fers have no doubt brought about a paradigm shift in the man-
agement of peripheral nerve injuries, there remains a signifi-
cant void in meaningful interventions that can enhance or
accelerate axonal regeneration. Work is underway investigat-
ing the use of exogenous growth factors as well as transient
immunosuppression [19-21]. While both of these techniques
have demonstrated tangible benefits, their practical wide-
spread clinical application has not been realized. A potentially
more applicable adjunct is the use of electrical stimulation.
Indeed, a considerable amount of work has been done inves-
tigating the use of electrical stimulation and its potential ther-
apeutic effects in both animal and human models. Initial work
largely focused on electrical stimulation of denervated muscle
[22-24] or continuous stimulation of the nerve [25-28]. A
significant amount of work has been done to define optimal
nerve stimulation parameters [29-35]. It has clearly been dem-
onstrated that 1 h of 20 Hz electrical stimulation upregulates
the expression of proregenerative growth factors and leads to
both enhanced and accelerated functional recovery following
nerve injury [30]. Even in the setting of delayed repair this
stimulation paradigm results in improved functional recovery
[29]. Previous work has also demonstrated that more is not
necessarily better, that chronic stimulation over several weeks
is not beneficial [25, 36]. More recently, our own group has
demonstrated that indeed while prolonged continuous stimu-
lation may not improve regeneration, intermittent stimulation
over several days may enhance functional recovery (unpub-
lished results).

The application of 1 h of stimulation, or potentially an
alternative paradigm over several days, remains challenging
for the nerve surgeon given (1) the time required in the oper-
ating room to deliver 1 h of direct nerve stimulation and (2) the
inability to deliver ongoing direct nerve stimulation following
the index surgical procedure. Recent advances in wireless in-
ductively powered technologies have changed the landscape
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Fig. 6 Intraoperative
photographs showing resection of
a traumatic neuroma. Left The
traumatic neuroma was
maximally damged and showed
discontinuity of the nerve at level
6 on the ruler. Right: Two
cadaveric nerve grafts are

interposed between the proximal
and distal stumps of the nerve

after the intervening neuroma has
been resected

of implantable medical devices. Using widespread established
technology we have fabricated dedicated peripheral nerve
stimulation devices which can be used to both wirelessly as-
sess functional recovery and provide direct nerve stimulation
without additional surgery to access the nerve [37, 38]. These
devices have been demonstrated to enhance functional recov-
ery following cut and repair in a rodent model (Fig. 7) without
the additional time required to deliver direct stimulation dur-
ing the index procedure. We expect that further innovation and
development of device composition will allow these devices
to have practical application in a human population.

Animal models of nerve injury

Despite the fact that rapid-stretch injury is the commonest
form of severe traumatic nerve injury [39], there is no gener-
ally accepted animal model for investigating this type of inju-
ry. While much attention has been given to biomechanics of
peripheral nerves [40—46], there is no existing animal model
to investigate the pathophysiology specific to rapid-stretch
nerve injuries. Creation of a successful animal model that
replicates the most common clinical presentation of acute
nerve injury may provide new insights and treatment options.

Rapid stretch injuries produce a unique pathology (and
pose a unique challenge)

The majority of severe nerve injuries result from rapid nerve
stretch caused by the rapid deceleration that occurs during, for
example, a motor vehicle collision or ejection from the vehi-
cle, or other high-speed collisions, such as a fall from height or
sustained during a sporting activity [47]. The severest injuries
benefit from surgery — but most patients are left with limited
strength and function of the injured limb. Even a “good” sur-
gical outcome rating may be associated with only minimal
return of strength [39].

There are specific problems unique to rapid-stretch injuries
that are not recreated in animal models of focal crush or tran-
section injuries. First, rapid-stretch injuries often heal in a
pathological “neuroma-in-continuity”, which creates

uncertainty in clinical decision making as well as intraopera-
tive repair [48—51]. Second, more severe nerve stretch injuries
produce long regions of nerve injury. The distal nerve is often
scarred and the results after repair tend to be poor, especially
when long segment grafts are utilized to replace diffusely
injured nerves. Third, when confronted with a stretch injury,
the standard approach remains to consider surgery within 3 to
6 months of the injury [52]; however, regenerative capacity
peaks within 2 weeks of injury [53]. The optimal intervention
should ideally pivot on the biological response to injury, and
should not be performed as a belated response to failure.

Current animal models

Overwhelmingly, experimental models to reproduce nerve in-
jury have employed either surgical transection or crush injury

8
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E 2 =O= Crush +Stim
1 —@— Cut
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0
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Time (weeks)

Fig. 7 Effect of electrical stimulation on functional recovery of the
sciatic nerve following cut and repair in a rodent model. Maximum
isometric twitch force (fop) and maximum isometric tetanic force
(bottom) evoked by the tibealis anterior (7A) and extensor digitorum
longus (EDL) muscles upon stimulation of uninjured, crushed, and cut
and repair sciatic nerve both in the presence and absence of brief electrical
stimulation via an implanted wireless nerve stimulator. Mean values and
standard deviations are shown. *p < 0.05 versus time-matched injury
model without brief electrical stimulation
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rre 3 %

Fig. 8 Video still from ultra-high speed video during rapid stretch of a rat
sciatic nerve

in the laboratory [54]. In clinical practice, however, these in-
juries are relatively uncommon [55]. Surgical transection and
crush injury models serve to provide axonotmetic injuries, but
these do not mimic the clinical situation characterized by an
extensive stretch injury to nerve architecture. Neither the bio-
mechanics nor the pathophysiology of rapid stretch has been

Normal

Stretched

studied experimentally in a rigorous manner. All major studies
analyzing the effects of stretch on peripheral nerves have uti-
lized slow rates of stretch [40—46]. Interestingly, while these
studies showed consistent relationships among strain, function
and histology, essentially all of the studies found conflicting
results. For example, the maximum strain (the measurement of
stretch) at biomechanical failure has ranged from 4% [56] to
over 100% [57], with recent values ranging from 20% to 73%
[41, 42, 44, 45] of the total length of the tested nerve.

Proposed model

Several elements are necessary for an animal model to accu-
rately mimic rapid-stretch nerve injuries: (1) reproducibility of
the injury; (2) lack of confounding injuries; (3) reproduction
of the histology seen in human injuries; and (4) production of
the dynamic range of injuries, including neurapraxia,
axonotmesis with recovery, and neurotmesis where the nerve
remains in continuity with no recovery. One of the authors
(M.A.M.) has developed a system to produce rapid-stretch
injuries in peripheral nerves in animals. Utilizing a vector-
constrained system, the force of a defined weight drop is used
to rapidly stretch a nerve in the animal (Fig. 8). An ultra-high-

Ruptured

Fig. 9 Normal (a, d, g) and damaged (b—c, e, f, h, i) sciatic nerve tissues
as visualized by neurofilament 200 antibody (NF200, a—c), luxol fast blue
(LFB, d—f), and hematoxylin and eosin stain (H&E, g—i). Normal tissues
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show well-organized Schwann cells, while sections from stretched nerve
show straightened axons with gaps between the Schwann cells (b, e, h),
and severely disrupted internal architecture (c, f, i)
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Fig. 10 Cross-sectional slice of rat sciatic nerve (modified Lillie’s
trichrome). The epineurium is the green-colored tissue at the base of the
figure. Intact perineurium is the dark laminar membrane separating the
epineurium from the endoneurium, as well as an intraneurial septum
(vertical membrane). Endoneurial fibers are dispersed and fragmented

speed video system captures the event at 5,000 frames per
second, and optical markers allow precise calculation of the
strain deformation, velocity, acceleration, and regional varia-
tion of rapid-stretch injury along the nerve. The system has
been used to study the biomechanical properties of nerves
subjected to rapid stretch, which have not been previously
studied, as well as the histological consequences of rapid
stretch. Similar to prior studies into the viscoelastic properties
of peripheral nerves [41, 42, 44], rapidly stretched rat nerves
demonstrate transition from an elastic phase (with passive
recoil to near prestretch length) to a plastic phase (loss of
recoil) after stretch beyond 50% strain. Biomechanical com-
parison with isolated nerve preparations has demonstrated that
the branching pattern of the nerve contributes to the magni-
tude of the failure (rupture) strain level as well as the location
of the rupture site. Detailed histological analysis has demon-
strated consistent injury patterns, with rupture of the epineu-
rium occurring at low strain levels, progressive fragmentation
of the endoneurium with increasing strain severity (Fig. 9),
and rupture of the perineurium when the nerve is stretched
beyond elastic recoil and undergoes plastic deformation
(Fig. 10).

More importantly, preliminary studies in mice have dem-
onstrated that the severity of the biomechanical force applied
in our rapid-stretch nerve injury model determines the degree
of recovery. Specifically, mice subjected to an injury below
the elastic limit demonstrate rapid recovery consistent with a
neurapraxic grade of injury. Ruptured nerves with the ends
placed in continuity and thus less than the critical gap (as
defined for sharp transection in rodents [58]) demonstrate no
improvement in functional performance. In the middle range,
mice whose nerves were stretched beyond the elastic limit (i.e.
plastic deformation) demonstrated persistently worse

functional performance consistent with at least a severe
axonotmetic grade of injury with partial recovery of function.
Thus, it appears that the degree of rapid-stretch injury can be
closely correlated with the likelihood of successful regenera-
tion and recovery. Our experimental animal model of rapid-
stretch nerve injury represents significant progress towards
generating in the laboratory biological grades of nerve injury
that are clinically relevant, important, and currently very chal-
lenging to treat.

Conclusion

It is our hope that this update on important and challenging
peripheral nerve problems will whet the appetite of the bud-
ding peripheral nerve surgeon. Although much progress has
been made, to paraphrase Robert Frost’s famous poem
“Stopping by Woods on a Snowy Evening”, we still have
miles to go before we sleep, and miles to go before we
sleep....
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